
Supporting failure analysis with discoverable, annotated log
datasets

Steve Leak∗, Annette Greiner∗, Jim Brandt†, and Ann Gentile†
∗National Energy Research Scientific Computing Center (NERSC), Berkeley, CA USA 94720

Email: (sleak|amgreiner)@lbl.gov
†Sandia National Laboratories (SNL), Albuquerque, NM USA 87123

Email: (brandt|gentile)@sandia.gov

Abstract—Detection, characterization, and mitigation of faults on
supercomputers is complicated by the large variety of interacting
subsystems. Failures often manifest as vague observations like “my job
failed” and may result from faults in system hardware/firmware/software,
filesystems, networks, resource manager state, and more. Data such as
system logs, environmental metrics, job history, cluster state snapshots,
published outage notices and user reports are routinely collected. These
data are typically stored in different locations and formats for specific
use by targeted consumers. Combining data sources for analysis gen-
erally requires a consumer-dependent custom approach. We present a
vocabulary for describing data, including format and access details, an
annotation schema for attaching observations to a dataset, and tools to
aid in discovery and publication of system-related insights. We present
case studies in which our analysis tools utilize information from disparate
data sources to investigate failures and performance issues from user and
administrator perspectives.

I. INTRODUCTION

As systems have become larger and more complex, the volume
and variety of log data has become formidable. Also increasing is
the need to find insights in that data to troubleshoot system problems
and identify root causes and propagation paths of faults, in support
of improving system resilience.

To aid efforts to extract meaningful information from log data, the
Holistic Measurement Driven Resilience (HMDR) [1] project has as
a goal the publication of annotated datasets for resilience research.
Making log datasets available to researchers is itself a significant
challenge: the data is large, and diverse in terms of format, storage
and access. Data beyond system logs is also valuable: contextual
information provided by batch system history, maintenance logs and
user error reports.

In this paper we address this challenge by first exploring the context
of the problem to understand why it is difficult. From this we infer
the requirements of a solution, outlined in section III. Our solution is
comprised of a machine-readable vocabulary for describing relevant
data, a schema for collating and using expert and machine-generated
annotations about log data, and some tools to make these accessible
to researchers. We describe this in detail in section IV. We describe
methods used to popluate a sample annotation database in section V,
and use it for some illustrative case studies described in section VI.

II. CONTEXT

To illustrate the opportunities and challenges posed by the as-
sortment of log-and-related data, consider the NERSC and ACES
(LANL/SNL) large-scale computational environments, represented by
the authors:

NERSC’s Cori system is a Cray XC40 with 2388 Xeon nodes, 9688
Xeon Phi nodes, a host of service nodes providing I/O forwarding,
a Datawarp burst-buffer filesystem, Lustre networking and system
management, and an Aries high-speed network in a Dragonfly topol-
ogy. Cori has a large external Lustre filesystem also cross-mounted

on Edison - another large Cray system at NERSC - via Infiniband.
It has external login nodes and shares GPFS filesystems with other
NERSC servers. There are air and water cooling components and UPS
power circuits. Along with Cray system software and programming
environments, Cori runs multiple compilers and MPI stacks and
hundreds of software packages. Its 7,000 users run tens of thousands
of jobs per day via the Slurm batch scheduler.

ACES Trinity is a Cray XC40 with 9436 Xeon and over 9500 Xeon
Phi nodes, a DataWarp burst buffer, an Aries HSN, and a Lustre
filesystem. Five months of system log data, not including job log
data, from only the Xeon Phi section of Trinity when it operated in
a stand-alone mode, contained 4.5 billion lines. Trinity serves the
needs of the National Nuclear Security Administration and has far
stricter access limitations than does Cori.

The associated centers support multiple production and test-bed
systems including bleeding-edge technologies and with many staff
members who support various aspects of each facility, the several
hundred projects and the several thousand users they collectively
support.

Data such as system logs, environmental metrics, job history,
filesystem state, outage notices and user reports are already routinely
collected, but the extraction of useful insights from these requires a
customized solution for each investigation and is limited by several
constraints:

• Data is collected by different people in different security do-
mains - for example, system logs for each subsystem are
typically available only to the system administrators for that
subsystem.

• Data is collected in different formats, usually based on the
output format of specific data sources and the needs of a specific
investigation.

• Data is stored in different places with different access mecha-
nisms - flat text files, binary formats including HDF5, SQL and
NoSQL databases, JSON via a RESTful interface, etc.

• Not all data is suitable for publication. Log files intersperse
entries relating to events contributing to some failure with
unrelated entries that may contain sensitive information such
as user login details. The difficulty of log anonymization and
risk of mistakenly releasing sensitive information discourages
data owners from exposing data to the wider community.

• The volume of data is very large, requiring an analyst to comb
through many unrelated log entries to identify the significant
entries.

• Much of the collected data requires domain expertise to inter-
pret, and this expertise is distributed across many people. For
example: at the 2016 Cray User’s Group Monitoring BoF [2],
the community, comprised largely of people with substantial
Cray experience, concluded that it would be valuable to have

authoritative, descriptive annotations of significant log messages
to aid in discover and understanding of system events.

• “Failure” is often vaguely defined (“my job took 30% longer
today than usual”) and research into failures and resilience is
often exploratory.

• Users and staff are not necessarily aware of what data is being
collected within a center, let alone between centers. Data and
expertise that might positively impact failure analyses therefore
goes overlooked.

In summary the diversity and volume of data, distribution of
expertise, risks around publication and challenges of discovery have
limited our ability to extract useful insights from the data we collect.
In the next section we explore the requirements for a solution to
address these constraints.

III. REQUIREMENTS FOR A SOLUTION

Much data is - or can be - collected, but often by different people
and for a specific purpose, and in formats chosen to suit the data
source or a specific use. For example, log data frequently originates
as messages emitted by some software and is thus stored as text files
with a timestamped line per entry, while job records are typically
stored in database tables with well-defined fields. Making data pre-
sentable and accessible beyond the specific needs of those collecting
it is difficult and time-consuming and, consequently, infrequently
performed.

This implies that to support extraction of useful insights from
available data we need to be agnostic towards the format and storage
of the data (requirement 1).

Furthermore, staff are often unaware of the full suite of data
collection activities at their site, let alone farther afield. This leads
to missed opportunities for gaining insights from what is already
collected and to redundant collections, so requirement 2 is to support
discovery with no a priori knowledge of other collection efforts.

An effective solution within a site is use of a tool like LogStash [3]
to convert everything to a common format and collect it in a single
centralized location. This however has some limitations:

• It requires all collection activities to ensure their data can be
converted and stored in the centralized format. Many ad-hoc
collection activities cannot justify the effort required to comply,
so the centralized collection fails to capture the full suite of
available data.

• The diversity of security domains poses a challenge: should data
be captured to a higher-security domain, filtered to a lower-
security domain or should each security domain have its own
storage?

• A centralized solution requires a significant commitment to
centralized maintenance, and trust that the incoming data is in
a useful format, at a useful cadence and tractable volume?)

Therefore we would like our solution to be decentralized (require-
ment 3).

Access to log datasets is an obvious requirement, but it is well-
known in the research community that very few datasets are released
for researchers due to the presence of sensitive data such as user
login information, the difficulty of log anonymization and the limited
cost-benefit trade-off between helping the community and the risk of
mistakenly releasing sensitive information.

The effort and risk in a release paradigm of “carefully redact sensi-
tive information before releasing data” is a roadblock for publishing
datasets so a solution should promote the opposite paradigm of “select
some non-sensitive data and release that” instead (requirement 4).

Expert commentary on the meaning of log messages has been
identified as a desirable [2] resource but expertise is domain-specific
and distributed across many individuals, all of whom have other, pri-
mary responsibilities. The solution must therefore allow for domain
experts to independently contribute advice in the format they already
use (requirement 5) - for example a spreadsheet of log message
definitions or a ticketing system with maintenance requests and notes.

Failure analysis research often looks for relationships between and
sequences in log records, and might include comparisons against
“control” logs from a different period or system. Operational trou-
bleshooting seeks to identify possibly-contributing events in the lead
up to an identified failure.

Failures at one component may be triggered by events at a
connected component so an ideal search would extend to logs
from related components. These relationships may not be a simple
hierarchy - for example the failure of a link might affect two “peer”
nodes. But an overly-wide search will return an intractable volume
of data, so the solution should support some means of filtering data
as well as of discovering non-obviously-related data (requirement
6).

So in summary, our solution should:
1) Be agnostic towards the format and storage of data.
2) Not require a priori knowledge of existing collections.
3) Be decentralized.
4) Allow publishing of data to be low effort and low risk.
5) Allow domain experts to independently contribute advice in a

format convenient for them.
6) Support data discovery and filtering across related components

IV. OUR APPROACH

These requirements seem complex and even self-contradictory, but
computer science has an aphorism: “We can solve any problem by
introducing an extra level of indirection”.

In our solution, metadata provides that level of indirection. Our
solution integrates three contributions to address these requirements,
with the key idea being the decoupling of publication from data
access:

1) An RDF vocabulary for describing log and monitoring data
collections in terms of the subject being monitored, the time
period covered, the type and format of the data and details
for accessing the data or contacting its curator. The vocabulary
allows construction of a distributed graph that can be queried
to discover relevant collections of log-like data and annotations
on that data.

2) A schema for publishing annotations for log data, which can
be represented in an SQL database (or otherwise used to define
the query and return fields of an API of a more complex repre-
sentation) also in terms of subject and time period. Annotations
databases fit neatly into the RDF graph and might contain:

• Expert commentary, such as “this log message means that
down links caused the network to be quiesced while re-
calculating routing tables”

• Human observations, such as “during this period our engi-
neer was replacing some failed nodes, so the network was
probably disrupted”

• Machine-generated observations, such as message-pattern
frequencies computed by running certain logs through an
analysis tool such as Baler [4].

3) A collection of tools to make the RDF vocabulary and anno-
tation schema accessible to users, system administrators and

support staff. The vocabulary and schema are independent of
the tools, but the tools provide an alternative to learning the
underlying technologies and a starting point for further tool
development.

A. RDF Vocabulary

A mechanism for decentralized description and discovery of data
was proposed over two decades ago [5] and exists now in the form
of Linked Data tools and technologies. The specification of RDF [6]
as a data interchange format for the World Wide Web is particularly
relevant to our identified requirements. Decoupling publication from
access meets many of these requirements (1, 4 and 5) and using
RDF to describe log data collections provides decentralization and
discovery without requiring a priori knowledge of other collection
efforts.

In RDF things (concepts or concrete items) are represented as URIs
and arranged in triples of a subject, a predicate and an object.

For example, we wish to state that NERSC is an Organization.
We have a subject (NERSC), a predicate (“is an”) and an object
(Organization). In a manner of pulling oneself up by one’s bootstraps,
the W3C [8] publishes some standard vocabularies in the form of
URIs that have a well-defined and documented meaning, including
that <http://www.w3.org/2000/01/rdf-schema#type>
refers to the predicate “is a”. Another vocabulary,
known as the Friend-of-a-friend vocabularies, associates
<http://xmlns.com/foaf/0.1/Organization> with
the concept of an organization. In this spirit we write the triple in
Figure 1 by associating a URI we’ve chosen: <http://portal.
nersc.gov/project/mpccc/sleak/nersc\#nersc> with
the organization we know as “NERSC”.

A single triple tells us very little, but a collection of many triples
forms a graph representing almost arbitrary knowledge graph. We
get decentralization by the use of URIs as graph elements - any
contributer can publish a set of triples and, so long as somebody is
aware of it, it can be incorporated into a global graph.

The other Linked Data element key to our requirements is the
SPARQL graph query language. A SPARQL query arranges variables
into a set of triples and returns nodes for which the triples form a
true statement. For example, the following SPARQL query will return
the name and interest for each node whose type is a subclass of
foaf:Agent. foaf:Agent is a superclass for a Person, a Group
or an Organization, so this query in English is “list the name and
interest for each Person, Group or Organization in this graph”. (The
rdfs:subClassOf* syntax indicates that the query should follow
rdfs:subClassOf edges to any depth until a foaf:Agent is
encountered).

SELECT ?name ?interest
WHERE {

?type rdfs:subClassOf* foaf:Agent .
?uri rdfs:type ?type .
?uri foaf:name ?name .
?uri foaf:interest ?interest .

}

Fig. 2. Example of a SPARQL query

Figure 3 illustrates how this query might act on a graph: the first
statement locates nodes - colored blue - from which one can traverse
rdfs:subClassOf edges and reach a foaf:Agent. The second
statement locates nodes (shown in red) in triples with an rdfs:type
predicate whose object is one found by the first statement. Thus

far we have found Jim, Ann, Annette and Steve. Next we look for
triples whose subject is one of those nodes and whose predicate is
foaf:name, reducing the set to Jim, Ann and Steve, then again
for predicate foaf:interest. Now only Steve matches all of the
criteria. Finally, we return the nodes associated with the name and
interest variables, which in this case are the nodes show in purple.

1) The vocabulary: The key classes and predicates forming our
vocabulary are illustrated in Figure 4. Figure 5 provides examples of
nodes in a graph corresponding to each class, and Figure 6 shows
how RDF descriptions of different LogSets published in different
places form a single, global graph. Figure 6 also shows how data
dictionaries describing different SubjectTypes and LogSeries
can be published and become part of the global graph when used.

The vocabulary is extended and specialized from the Data Catalog
Vocabulary [9]. The meaning, reason and usage of some key classes
and properties are:

Catalog
The dcat:Catalog class connects LogSets and also,
via rdfs:seeAlso, other catalogs. This is the primary
mechanism for linking sites into a global graph: we antici-
pate that each site will publish a catalog to which its own
staff can contribute LogSets, and which is linked to a few
other sites via rdfs:seeAlso.

LogSet
A collection of logs related in system and access and
timespan, for example the logs collected in a p0- directory
in the SMW of a Cray XC for a single boot session.
The LogSet should provide a description of the data and
contact information and is an entry point to metadata for
the ConcreteLogs. Temporal and subject information for
the LogSet can be infered from those properties of its
ConcreteLogs.
A LogSet might be a closed archive or might be “open”,
acquiring new logs over time.

ConcreteLog
A ConcreteLog describes a specific, concrete source of
log entries. This will often be a log file but could also be,
for example, a Slurm instance from which job data can be
obtained.
The accessURL and downloadURL have subtly differ-
ent uses, inherited from dcat:Distribution. Where
security or practical constraints preclude direct download
of data, accessURL can be used instead to find more
information (such as how to request access).
The ConcreteLog should also include the start and
(optional) end dates encompassed by the log. Inclusion
of information about the size and number of records is
also recommended, as a means of avoiding download of
excessively large data volumes.

LogSeries
Most log data can be classified into a few series, such as
“console log files” or “Slurm job records”. ConcreteLogs
within a LogSeries have the same structure but span
different times or subjects. A LogSeries is often common
to systems from a given vendor and is expected to be
published in a common dictionary.

LogFormatType
The LogFormatType gives hints to tools about how a
particular LogSeries should be handled. For example,
many logs are in the form of a timeStampedLogFile.
Series-specific details such as how to identify the timestamp

@prefix nersc: <http://portal.nersc.gov/project/mpccc/sleak/nersc#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
nersc:nersc rdfs:type foaf:Organization .

Fig. 1. A triple of (subject, predicate, object) describes an edge in an RDF graph. The Turtle [7] syntax shown here aids human readability by condensing
URIs into a prefix and a suffix, so for example rdfs:type expands as <http://www.w3.org/2000/01/rdf-schema#type>.

Fig. 3. Illustration of the SPARQL query in Figure 2

of a record is published in the logFormatInfo property
of the LogSeries.

Subject
Logs are about something - e.g. the cluster, a specific
service node or the filesystem, so each ConcreteLog
should indicate this. Subjects mostly correspond to Cluster
components, and can be assembled into a hierarchy via a
partOf property. Not all relationships are hierarchical -
for example a network link impacts the device on each end
- so we support a weaker relationship affects as well.

SubjectType
In the same way that ConcreteLogs can be classi-
fied into LogSeries, Subjects can be classified into
SubjectTypes. An example SubjectType is “cluster”,
compared its corresponding Subject such as NERSC
Cori. During the procedure of cataloging LogSets, the graph
can be queried to see that a specific LogSeries is about
a SubjectType, eg hsn, from which tools can infer that
a specific ConcreteLog should be associated with, eg
cori_hsn. (This inference capability is essential when
cataloging thousands of log files)
SubjectType based on the skos:Concept, through
which SubjectTypes can be classified as broader or
narrower than each other (“network” is a broader concept
than “AriesHSN”).

B. Annotation Schema

The primary goal of annotation is to provide a reduced set of
searchable, understandable data that can hint at relationships between
logged events and guide the user to further searches and to interesting
locations in the raw log data. This differs from tools such as SEC [10],
which is intended to enable action upon the run time occurence of a
log line matching a regex (e.g., notification of failed component), or
Splunk, which is intended to facilitate knowledge of the occurences
of pre-defined events with accompaning statistical plots.

Along with our identified requirements, this goal provides some
design requirements for the schema:

• Temporal and subject (system and component) information are
the key fields, along with a human readable description, the
annotation itself.

• The raw logfiles that the annotation concerns should be identi-
fied, if possible.

• Multiple people should be able to annotate the same underlying
log data, and users of the annotations should be able to identify
annotators to request more information, if necessary.

• The architectural relationships between components indicated in
annotations should be accessible, in order to facilitate traversal
from an annotation of interest to annotations relating to compo-
nents that may have impacted it.

• Annotation fields should support searching based on the subject
type of an annotated event (such as a network event) or other
related information.

1) The schema: Our annotation schema can be represented as an
SQL database definition with a central “annotations” table:

CREATE TABLE 'annotations' (
id integer,
authorid char(3) NOT NULL,
description text NOT NULL,
-- timespan of the action or event:
starttime datetime NOT NULL,
endtime datetime NOT NULL,
-- impact of the action or event:
startstate text,
endstate text,
systemdown boolean,
system text,
components text,
-- was the event manually induced?
manual boolean,
-- subject type and annotation context:
LDcategory text,
LDtag text,
balerpatternid integer,
-- event source:
logfiles text,
PRIMARY KEY('id','authorid')
);

Fig. 8. The central annotations table definition.

Fig. 4. Key classes and predicates in the logset vocabulary.

Fig. 5. Examples of nodes in the graph and how they relate to vocabulary classes

Fig. 6. Examples of some nodes and relationships published in different places from different sites (indicated via color), forming a single global graph.

Fig. 7. Annotations provide reduced, tractable view of significant events in
a much larger volume of log data.

The id, source, description and temporal fields are self-explanatory.
The impact fields are designed to aid exploratory analysis, for
example startstate and endstate can be used to indicate that
a component that was in a faulty state was either repaired
or flagged by the end of the event. A systemdown flag allows
search for events resulting in a full system failure.

The system and components fields correspond to the
Subject class of the RDF vocabulary. For the Cray system we de-
fine node, blade, chassis, cabinet, router, tile, link,
nic, smw, and other, all of which (except other) are also
SubjectTypes described in RDF in data dictionaries and can, in
combination with the system, identify a specific component.

The components may be identified with finer granularity than
is represented in the RDF graph - for example c0-1c0s4n0. The
LDcategory includes node/blade, scheduler, storage,
network, cooling/facilities/sensors, power, system
software, datawarp, and unknown, which also correspond
(except for unknown) to SubjectTypes in an RDF dictionary. The
name of this field and its categories are inspired by LogDiver [11],
a tool developed by UIUC which associates regular expressions
defining events in log files of interest with categorizations including
these. We envisage LogDiver as an option used to identify log entries
for annotation.

The manual flag indicates that an event was manually induced,
such as an administrator action to take down a node as opposed
to the system taking down a node because it failed a health check.
Knowledge of this can be used to more accurately determine the
number of true failure events and for assessing the effectiveness and
availability of system resilience mechanisms

2) Other tables: The schema includes some supporting tables:
Meta Annotations

The metaannotations table supports annotation sets,
wherein a collection of annotations relates to a single larger
event

Component Aliases
Different components are identified differently in different
log series, for example the same node on a Cray XC
might be called nid00001 by the scheduling system,
c0-0c0s0n1 by the boot system and even its IP address
by another log source.
To support this we define an aliases table, mapping

equivalent component names. This is generally populated
via /etc/hosts, or on Cray systems, the output from
rtr --system-map

Architectures
The topologies of current clusters are more complex than
a simple hierarchy, so we support the definition of mul-
tiple architectures to describe relationships between com-
ponents. We have defined three architectures for Cray
systems, these are described below. We chose to separate
architectures in order to enable different search and in-
terpretation of events which affect components with dif-
ferent association with each other. Associations
include parent-child: component-component as
opposed to parent-child: router-tile, or peer:
HSN link as opposed to peer: Router-NIC or
peer: NIC-Proc.

3) Component hierarchies: We have identified three distinct ar-
chitectures within a Cray cluster

1) The physical architecture consists of parent-child or
container-contained associations, such as a cabinet -
chassis, blade - router, router - link and
router - nic. This table is populated from the system
definition - for example on a Cray XC each cabinet holds
three chassis, so an entry might look like:
id type cname parent children
1 CAB c0-0 smw c0-0c0,c0-0c1,c0-0c2

The physical architecture supports discovery of faults prop-
agating from child to parent components and vice versa.

2) The router architecture describes network topology from
the perspective of the router - for example an Aries may be
specified by its (blue:black:green) identifiers while a Gemini by
its X:Y:Z. This supports determination of proximity of events
in the network topology.
id type cname NICS [...] nettopo
11 RTR c0-0c0s11a0 c0-0c0s... 0:0:11
12 RTR c0-0c1s0a0 c0-0c1s... 0:1:0
13 RTR c0-0c1s1a0 c0-0c1s... 0:1:1

3) The link architecture supports discovery of faults propagating
across connected components, such as a node failure disabling
a link and contributing to congestion conditions on its peer
node.
id type E0 E1
16 GRE c0-0c0s0a0l20 c0-0c0s4a0l22

A few components, such as the SMW, affect everything in the
system. To represent such global associations we also define a
supremum relationship.

C. Tools

There is no technical constraint preventing someone from cata-
loging, annotating and investigating a dataset by manually writing
RDF files, populating an annotation database and running SQL and
SPARQL queries against them. However, the schema and vocabulary
are made accessible to a much wider audience via tools that ease the
learning curve and automate many of the processes.

In the course of this work we have developed a small collection of
tools for constructing and querying graphs and annotation databases.

1) Cataloging log sources and archives: For easier use of the
RDF graph, we have developed a framework, in the form of a python
package for constructing and querying the graph. The package is still
pre-release and in active development; so far, its capability is limited

$ logs.py catalog -n http://example.com/myindex -d ./p0-20170906t151820 -u ./cray-
dict.ttl -u ./nersc.ttl -u ./snl.ttl

Give this log set a title (eg "Cori smw logs p0-20170906t151820"): Cori smw logs p0
-20170906t151820

Please enter short description of this log set "Cori smw logsp0-20170906t151820":
My sample log set

Which organization is the publisher for this log set "Cori smw logs p0-20170906
t151820"?

1: NERSC: http://www.example.com/phonebook#nersc
2: Sandia National Lab: http://www.example.com/phonebook#SNL

Selection:
1
Who is the contact person for this log set "Cori smw logs p0-20170906t151820"?
[..snip..]
Please indicate the (high-level) subjects of these logs, or some (n)ew ones:

1: cori: http://www.example.com/entities#cori
2: cori hsn: http://www.example.com/entities#cor_hsn
3: cori slurm: http://www.example.com/entities#cori

[..snip..]

Fig. 9. A sample of the cataloging process, where the system asks the user
a series of questions from which it can infer metadata about the logs found.

:myindex a logset:LogSet ;
logset:isClosed true ;
dct:contactPoint <http://www.example.com/p..>
dct:description "My sample log set" ;
dct:publisher <http://www.example.com/phon..>
dct:title "Cori smw logs p0-20170906t15182.."
dcat:distribution :console20170906,

:console20170907,
:messages20170906,
:messages20170907 ;

dcat:landingPage "www.nersc.gov" .

:console20170906 a logset:ConcreteLog ;
rdfs:label "console-20170906" ;
logset:estRecordCount 20;
logset:estRecordsPerDay 12256 ;
logset:isInstanceOf <http://www.example.co..>
logset:subject <http://www.example.com/ner..>
dct:temporal [a dct:PeriodOfTime ;

logset:endDate "2017-09-06T15:22:4.."
logset:startDate "2017-09-06T15:20.."

dcat:accessURL "www.nersc.gov/logs.tar.gz" ;
dcat:byteSize 1599 ;
dcat:downloadURL "console-20170906" .

Fig. 10. A (truncated) snippet from the index created by the cataloging process

to walking a directory tree to discover and catalog log files –with
some constraints on the types of log files it can inspect– and some
basic querying. The design is extensible: a small interface is defined
for handlers of file and log format types and additional handlers are
easily added to the toolkit.

Much information must be collected to create useful metadata:
most of this can be automatically inferred by querying the graph
and inspecting the file (for example, the filename hints at the likely
LogSeries, temporal boundaries can be discovered by reading
the first and last records and the subjects for a tree of log data
can be inferred from a coarse-grained subject (such as the cluster)
and information held by each LogSeries. Details requiring human
input are acquired through a simple question-and-answer interface
that presents the user with reasonable guesses and prompts editing
and confirmation. In this manner thousands of logs can be described
based on only a handful of user interactions.

2) Querying Annotations: A stated goal of our project is to
enable annotation of log data so that researchers can analyze it with
sufficienct context to understand what was happening on the system
when a given set of loglines were written. However, such a tool would
also enable consultants and users to make sense of log data in order to

better address questions about job failures. Neither use case would
be addressed, however, without an efficient means of querying the
annotations. We have therefore created a python-based query engine
for that purpose.

The query engine offers a set of command-line flags to customize
a query. Users can combine them for highly specific queries without
resorting to complex SQL. A user can refine a query by start (-s or
–start) and/or end (-e or –end) time, by component name (e.g., node
or slot cname, -c or –component), by type (descriptive phrase, such
as ”link down”, -t or –type), or by any of the columns in the database
schema (-t columnname=foo). In addition, a user can specify a job
ID (-j or –job) to retrieve annotations on logs written during the time
of the job and affecting any of the nodes on which it ran. Adding the
-a or –after flag enables the user to specify a complex query with a
single timestamp and retrieve the next single instance of a match for
the query.

In addition to specifying a single component, a user can retrieve
annotations for related components, traversing the architecture of the
system to a specified depth (-d or –depth), or number of hops. For
example, a query for a component specified to depth 2 would retrieve
parent and grandparent components as well as child and grandchild
components. For any depth search, any supremum (eg SMW) or
‘unknown’ components are also queried. This flag leverages a table
of physical components in the database that reflects the architecture
of the system for which the annotations were made.

The user also has options for viewing the retrieved annotations.
Formatting options include a table (-f table), a JSON array (-f json), or
the default textual listing Figure 11. The user may choose to increase
verbosity (-v, -vv) or to limit the maximum number of retrieved
annotations (–limit).

An additional query for jobs (–jobs) allows the user to enter one or
more annotation identifiers and retrieve the list of job IDs that could
be affected by the annotation, based on the time and the nodes on
which they ran.

The current query engine retrieves annotations only, though the
annotation metadata provides sufficient information to locate relevant
log files. We plan to enable retrieval of subsets of the logs through
the tool in the future.

3) Creating Annotations: Annotations can be added to a database
by several means. The simplest approach would be with an SQL
insert at an sqlite command line, but this method can be tedious and
relies on manual input. One simple way of adding a large batch of
annotations is to enter them as a spreadsheet in CSV format, using a
small uploader script which we provide. These approaches work well
for human-generated annotations, such as individual observations
from a system administrator or output from a ticketing system.

To faciliate the automated creation of log line annotations and the
identification of the occurrences of events to be annotated, we have
been using two external tools, Baler and LogDiver (described in more
detail below). In support of these we have developed tools to create
annotation using output from these.

Note that, while we use SQLite in our prototype, SQL databases
are not required by our design. A plugin interface to a component
presenting an API which could return similar annotation information
would also be appropriate (e.g., one could front a tool with its own
datastore). However, to enable a simple, consistent format for portable
general release of an annotated dataset we do so, as described in the
next section.

[822659] by acg on system Mutrino
Time: 2015-04-29 18:16:32 to 2015-04-29 18:16:32
Start state: None ; End state: None
Description: Correctable memory error. This may
result in degraded performance.
Manually invoked? False ; System down?: False
Components: ["c0-0c1s8a0n0"]
Tags:
LogDiver category group: NO
Baler pattern ID: 280
Relevant log files: hwerrlog

[822660] by acg on system Mutrino
Time: 2015-04-29 18:16:42 to 2015-04-29 18:16:42
Start state: None ; End state: None
Description: Correctable memory error. This may
result in degraded performance.
Manually invoked? False ; System down?: False
Components: ["c0-0c1s8a0n0"]
Tags:
LogDiver category group: NO
Baler pattern ID: 280
Relevant log files: hwerrlog

[822661] by acg on system Mutrino
Time: 2015-04-29 18:16:52 to 2015-04-29 18:16:52
Start state: None ; End state: None
Description: Correctable memory error. This may
result in degraded performance.
Manually invoked? False ; System down?: False
Components: ["c0-0c1s8a0n0"]
Tags:
LogDiver category group: NO
Baler pattern ID: 280
Relevant log files: hwerrlog

*** Done! ***

Fig. 11. Annotations as returned by the query engine in default format.

V. PROOF OF CONCEPT

To faciliate the creation of log line annotations and the identifi-
cation of the occurrences of events to be annotated, we have been
using two tools.

LogDiver [11] is a tool developed by UIUC which includes a set
of regular expressions defining events in log files of interest; the
regular expressions are associated with categorizations which are a
subset of those described in the previous section; the category name,
LDcategory, was chosen to reflect our intention to map to the
LogDiver categorizations where possible. LogDiver itself is used to
discover the occurrences of the regular expresssions in the logs and
to determine statistics and information about event sequences such
as statistics of failure events, or of timings of failures and recoveries.
LogDiver, or any such regex-based tool (e.g., SEC), can be used
to efficiently extract events for subsequent annotation, based on the
intention for the existence of the regex.

For the dataset described in this work, we principally used
Baler [4] for identifying the log lines to be annotated and for
extracing them from the dataset. Baler extracts patterns from log
files without requiring apriori knowledge of regex of interest. Rather,
Baler takes dictionaries of ”words”; words appearing in the log
lines are the passed through to the pattern and non-words become a
wildcard in the pattern. Wildcards of certain formats, for example
numbers, hex dumps, char arrays, hostnames and link names (in

cname format for Cray systems) are represented as that formatted
type in the pattern. For example, every instance of the log message
mutrino-smw 24626 found_critical_aries_error:
Processing ’’PCI-e CMPL_TIMEOUT’’ critical
error (0x660e) is represented by the pattern <host> nlrd
<pid> found_critical_aries_error: Processing
’’* *_TIMEOUT’’ critical error (<num>). This
illustrates where words, formatted wildcards, and unformatted
wildcards (represented by *) appear in the pattern.

For Cray systems, we augment the dictionary with an architecture
specific dictionary of about 100 words (e.g., Lustre, DIMM). For 3
months of data [12] from our Trinity test system, Mutrino, a 100 node
XC 40, we had over 120 million text log lines which were reduced
to 15,500 patterns 1. To further identify patterns of interest, we
weight the patterns by the occurence of 50 weighted keywords (e.g.,
congestion = 1.5, error = 1.5, degrade = 0.75). This further reduced
the patterns to 2,500 significantly weighted patterns. For exam-
ple the pattern <host> nlrd <pid> ***ERROR***: Link
recovery operation failed; error <num> has an ag-
gregate weight of 5.5. From those, we chose 150 patterns (about
1 percent of the total) to annotate with enhanced descriptions. This
resulted in about 860,000 annotated log line instances.

It is our intention to build a plugin to interface with Baler, and
support the annotations there, however in the prototype, we merely
annotated the extracted patterns from Baler and loaded them into a
single database. We include the Baler pattern id in the annotation
fields for reference ease; only the annotation description, not the
original log line nor the pattern, is stored in the annotation database.

Some example patterns, from which the originating log line will
be obvious, and the resulting annotations used in this work, are given
in Figure 12.

We fed Baler with the Cray logs in the format in which they reside
on the smw. This required us to do some file-specific format extrac-
tion of messages, timestamps, and components (e.g., netwatch,
hwerrlog) which we may not have had to do if we had fed it raw
syslog versions of the files or datastream; however, this also enabled
us to include the log file type (e.g., nlrd, hwerrlog) in the pattern
metadata, which aids the log file look-up.

For many cases, messages are reported on the smw with the
component association of the smw. For some cases, we can extract
the actual component of interest. For example, from the Baler pattern
<host> nlrd <pid> found_critical_aries_error:
handling failed * link on <host> (node) we can
infer the fields from which to extract the host to which the
annotation should be associated. Other messages refer to actions by
the SMW for which the component cannot be inferred. In these cases
the component assignment will either be the smw or ’unknown’.

We used Baler for all major log processing, except for the
command log, which required us to associate START and END of
events, for which we used a perl script. This log includes both manu-
ally initiated and automatically invoked commands of interest such as
warmswaps, boots, etc. This was particularly useful for determining
manual actions that may not have been well documented by the
system administrators. This resulted in another 2,000 annotations.
In addition, we extracted the times of reboots from the datetime in
the name of the p0-XXX directories. All annotations from these two
sources are attributed as manually induced.

1This differs from some previously published [13] numbers due to some
new pattern formatting features and the lack of metaclustering in this work.

Baler pattern, preceeded by weight (W=#) and balerpatternid number:
(W=5) 258 HWERR[<host>][<num>]:<num>:SSID RSP A_STATUS_ORB_TIMEOUT Error:*=<num>:*=<num>:*=<num>
Annotation:
authorid:acg description: 'ORB timeout waiting on outstanding request(s) in the buffer' LDcatgroup: NE

Baler pattern and weight:
(W=3.75) 498 <host> nlrd <pid> do_set_alerts: <num> links failed, <num> blades failed, <num> blade critical faults, *_in_progress <num>, *_*_reroute <num>; reroute req
Annotation:
authorid:acg description: 'Setting alerts due to failures. A network reroute is required' LDcatgroup: NE

Baler pattern and weight:
(W=3.25) 748 <host> nlrd <pid> ***ERROR***: Warm swap operation failed; error <num>
Annotation:
authorid:acg description: 'Warm swap failed. This is in response to a operation intended to reset/reinit/replace a component (including network components).' LDcatgroup:

NO

Baler pattern and weight:
(W=1.5) 705 <host> nlrd <pid> responder_work_*: Top <num> nodes involved with network congestion
Annotation:
authorid:acg description 'System computing and listing congestion candidate applications' LDcatgroup:NE

Fig. 12. Example Baler patterns extracted from log lines and their annotated versions. Events to annotate are based on knowledge of significant events.
Annotation descriptions can provide additional context to non-self-explanatory log messages.

Some other system administrator actions were recorded by manu-
ally generated annotations (about 10, in this case). Ticketing systems
may be used to generate such annotations as well. Knowledge of such
events is useful for understanding the root causes and resolution of
errors in the dataset.

Other non-log events include external actions by non-
administrators such as facilities tests and fault injection research,
which require annotations by different people. These were also
generated manually for this dataset. Similar to the Baler-insipred
annotations, for the prototype these were loaded into the same
annotation database.

Job data was extracted from alps logs, which was the scheduler
in use for this time period. This could be replaced with queries to a
SLURM, or similar, database or interface, where available.

VI. CASE STUDIES

We show use of the annotations in the prototype implementation
and tools. Examples demonstrate the utility of the annotations in
understanding event occurrences and in problem diagnosis. The
search space is greatly reduced from the whole log files, yet the key
events are revealed. The descriptions provide contextual information
needed for understanding events, thus lowering the barrier of expert
knowledge needed for understanding log events. The annotations can
faciliate honing in on areas where further analysis in the log files is
needed.

In these examples, we have presented our annotations in their
current state – including typos and uncertainties in the interpreta-
tions. We expect that this will be reflective of the annotations in
operation, with annotations evolving as additional authors weigh in
and additional expertise is obtained.

Note that some columns in the figures of annotation queries have
been suppressed due to space constraints. We explicitly retain the
balerpatternid in the columns as this makes it easier for
the reader to associate individual instances of annotations of the
same underlying event type (e.g., same log message except for a
different component at a different time). Colors in figures containing
annotations are used to help call out annotations referred to in the
text.

A. Job Impact

We have annotated messages relating to potentially performance
impacting conditions, including thermal throttling events, power bud-
gets exceeded, and memory errors. Example annotation descriptions
include:

• Correctable memory error. This may result in degraded

performance

• Blade or Cabinet controller taking correctable memory

errors. This may affect performance.

• Package temperature above threshold (too hot). The

CPU clock has been throttled. Should result in all

threads for all cores will be throttled. This may

affect application performance.

Of particular interest in XC systems is the ability to power cap.
In such cases, not only is it of interest when the power budget is
exceeded, but also when caps are applied, or perhaps fail to be
applied. Our annotation system enables such events to be exposed
to the user. Many of these messages are identified by commands in
the commands file or in the controller logs and therefore are not
typically released to users. Since our move to SLURM, there has been
no automatic reporting of cap settings to the user. Currently, our users
must manually cat /sys/cray/pm_counters/power_cap
on each node to see current cap setting, or poll it to catch dynamic
changes during runtime.

Examples include commands annotated as:

• applying a power profile

• enforcing a power limit

error messages annotated as:

• Error getting initial node power status. This may

affect power capping.

• Error disabling power monitor. This may affect power

capping.

• Node Error setting power budget. This may affect power

capping.

A fundamental goal of the annotations to expose information to
users that will enable understanding of why performance and power
limits did not perform as expected. Basic capabilities enabled by our
infrastructure include the ability to determine annotations occurring
during a given job and jobs running while an annotation occurred.
Examples of each are given in Figure 13. In the top of the figure, all
annotations during a job are queried – it is seen that multiple times
on multiple nodes, the power budget is exceeded, which may result in
performance impact and may be unanticipated by the user who set the
cap. The capping mechanism is intended to keep the average power
draw at or below the cap over a few second window at or below the
cap; however instantaneous values may exceed the cap. Excursions
over the cap are not indicated to the user. In the bottom of the figure
jobs running while an annotation occurs are queried. In this case,

while the annotation was specific to node c0-0c1s3n2, the job
itself was running on 96 nodes. Facilitating tracing the propagation
of impact of an event is one of the design goals of this work.

B. HSN Congestion

In order to investigate network conditions, we chose to search for
annotations involving the word ”congest”. Query results are given
in Figure 14. While this looks like the expected output of response
to a congestion conditions, with candidate nodes and applications as
computed by the system, the occurrences were surprising on a system
of this size.

These annotations guided us to the nlrd in search of applications
of interest. The link from annotation to relevant slice of the source
logfile is a planned capability of the graph-query tool, however that
functionality was not yet available so a visual inspection of the
relevant file was used.

There were, however, no applications listed. As a result, we then
queried for all annotations around this time window to find indication
of a non-application congestion cause.

A query for annotations between 10:00 and 10:32 on that day
resulted in 300 annotations, with only 7 distinct ones. The reduction
in log lines to annotation instances makes investigation of time ranges
tractable and eases discovery of similar event instances. Other than
the ones in Figure 14, the rest dealt with problems with a single
component c0-0c1s8a0n0 and system response to congestion:

• 192 occurrences for c0-0c1s8a0n0 of Correctable memory

error. This may result in degraded performance.

• 47 occurrences for c0-0c1s8a0n0 of Component failed.

• Telling all blades to throttle network bandwidth. This

should result in decreased network injection.

• Telling all blades to unthrottle network bandwidth.

This should enable increased network injection.

• Unthrottling the service blades only

While we cannot be sure from the annotations alone that failure in
this component was the cause of the congestion, it is clearly a strong
suspect.

Querying for annotations for c0-0c1s8a0n0 revealed that the
component’s problems of these 2 types started on 2015-04-02
10:22:47 and ended on 2015-04-30 at 07:16:52. Narrowing down
the root cause of the problems is difficult, however, because of a
number of deliberately induced failures during facilities testing which
occurred that day. While we have put in a manual annotation for
Facilities testing, the distributed system which we envision would
have enabled the Facilities staff to annotate in more detail the exact
testing which occurred. Currently the Facilities testing annotation
has to serve as an indicator to examine the logs in which indications
of induced fan and power failures occurred.

The resolution of the problem is discovered by using a depth search
to query annotations of related components: here -d 2 includes two
levels of parents (c0-0c1s8a0 and c0-0c1s8) children (none),
and any unknown/supremum components. The depth was chosen with
the expectation that resolution would occur due to actions at the Aries
or blade level.

While roughly 500 annotations occurred in response to the query,
only about 30 distinct annotations occurred. This is in contrast to
the raw log files in which over 153,000 log lines occurred. The
annotations make it easy to understand the sequence of events.
Extracted annotations are in Figure 15. First an annotation of a
system administrator, ’abc’, action, generically assigned to the day
(green) confirms that the blade is being reseated in response to errors.
Warmswaps of the blade occur (cyan), however, while the warmswaps

report as successful, timeouts waiting for items in the Outstanding
Request Buffer (ORB) result in the ORB being ’scrubbed’, delaying
the recovery (red). The annotations help with the understanding of
the ORB scrub related events. Eventually the blade is added back
(green) successfully and the blade is then booted.

The annotations additionally make it easy to compare and inves-
tigate timescales of similar events. For instance, a recovery analysis
might be based on the occurrences and durations of the warmswap
sequences. This case might appear of longer duration that others, and
the intervening ORB scrubbing events that needed to be handled for
full recovery would be easily apparent.

C. Root Cause Diagnosis

Another network investigation started with a search for annotations
involving the word ”route”. We were expecting to see events about
reroutes triggered as a result of component failure. More interesting
are cases where the reroutes failed. Query output is shown in
Figure 16.

Each annotation Setting alerts due to failures. A
network reroute is required makes clear that there has
been a failure and what the next step in the response will be. It appears
that 3 failures occurred that require network reroutes to recover and
two of the computations of those route computations failed (red).

To understand why the route computation failed, we query for
annotations during a time frame preceeding the event, limiting the
options to network (NE) annotations only. Query output is shown in
Figure 17. There are only 24 total annotations as opposed to the raw
log lines which total over 238,000. It is clear from the annotations,
that the component triggering the problem was c0-0c0s9a0 and
that while the recovery operation for a failed link was successful
(green), the failure of the reroute was due to a problem in adding the
blade back to the HSN (to include it in the routing) (orange).

This drives us to investigate problems with c0-0c0s9. Query
output is shown in Figure 18. The full output has 90 annotations, but
there are only a few distinct ones (shown). There is an out-of-memory
killer annotation (red) that occurs repeatedly (repeats suppressed in
the figure). Of particular interest is that the out of memory problem
is reported by the blade controller (file is controllermessages and
component is the blade), as opposed to a user process being killed
by the OOM killer on a node.

While determination of the exact cause of the problem may
necessitate involvement of a vendor, it is at least obvious from this
that the blade controller operating system believes it is experiencing
a low memory condition and taking active measures to prevent
complete failure. This could be due to a variety of reasons such
as a memory leak, a communication problem causing buffering of
messages to fill memory, etc. Unfortunately the processes it kills
may be needed for proper operation and the problem being fixed
by a complete reboot seems to validate that the problem was a
software/firmware state issue and not hardware failure.

Finally, we are interested in determining if this problem got
resolved and how. We utilize the depth search -d 1 to query parents
(c0-0c0), children (the nodes and Aries), and any unknown/supre-
mum components. The depth and time range currently are chosen by
trial and error, however from output in Figure 19 it is clear that the
OOM messages continue until an unsuccessful attempt is made to
power down the blade (orange), and a few attempts are necessary to
reboot the system (red) and clear the alert (green).

This case also illustrates the endstate field (which is automati-
cally populated with the end state of commands in the command
file (described in Section V)). Note that erroneous commands, for

query for annotations during JobId 163510
python get.py -j 163510 -f table annotations
id authorid starttime endtime description logfiles LDcategory components balerpatternid
855158 acg 2015-05-03 01:12:16 2015-05-03 01:12:16 Node power budget exceeded. controllermessages PW ["c0-0c1s3n2"] 2871
864565 acg 2015-05-03 01:12:21 2015-05-03 01:12:21 Node now within power budget after it was exceeded. controllermessages PW ["c0-0c1s3n2"] 2872
855159 acg 2015-05-03 01:12:22 2015-05-03 01:12:22 Node power budget exceeded. controllermessages PW ["c0-0c0s11n0"] 2871
855160 acg 2015-05-03 01:12:23 2015-05-03 01:12:23 Node power budget exceeded. controllermessages PW ["c0-0c1s3n1"] 2871
...Occurs multiple times for multiple nodes...

query for jobs running during annotation 864574
python get.py --jobs 855158 -f table annotations
JobId UID JobName NumNodes Start End
(’163510’, XXX, ‘‘’xhpl’’’, 96, ’2015-05-03 00:51:24’, ’2015-05-03 01:19:15’)

Fig. 13. Annotations provide access to power state information in otherwise unavailable logs. Basic implementation capabilities include discovery of annotations
during a job (top) and and jobs running while an annotation occurred (bottom).

query for annotations where any of the text fields (e.g., description, LDcategory) contain the word 'congest'
python get.py -t congest -f table annotations
id authorid starttime endtime description logfiles LDcategory components balerpatternid
756163 acg 2015-04-28 10:15:44 2015-04-28 10:15:44 System computing and listing congestion candidate applications nlrd NE ["unknown"] 704
756168 acg 2015-04-28 10:15:44 2015-04-28 10:15:44 System computing and listing congestion candidate nodes nlrd NE ["unknown"] 705
...
756167 acg 2015-04-28 10:32:06 2015-04-28 10:32:06 System computing and listing congestion candidate applications nlrd NE ["unknown"] 704
756172 acg 2015-04-28 10:32:06 2015-04-28 10:32:06 System computing and listing congestion candidate nodes nlrd NE ["unknown"] 705

Fig. 14. Congestion response annotations occur 5 times within 15 minutes. The annotation regarding candidate applications drove investigation of the nlrd
log file, but no applications were listed.

query for annotations between the time frame of interest for the named component and any components within a depth of 2
python get.py -c c0-0c1s8a0n0 -d 2 -s "2015-04-30 07:00:00" -e "2015-04-30 10:00:00" -f table annotations

id authorid starttime endtime endstate description logfiles LDcategory components balerpatternid
4 abc 2015-04-30 00:00:01 2015-04-30 23:59:59 aries errors blade reseated Blade reseating in response to aries errors NE ["c0-0c1s8"]
865013 acg 2015-04-30 07:10:14 2015-04-30 07:10:15 1 xtwarmswap remove commands NO ["c0-0c1s8"]
865797 acg 2015-04-30 07:15:50 2015-04-30 07:15:50 1 xtwarmswap remove commands NO ["c0-0c1s8"]
866043 acg 2015-04-30 07:16:47 2015-04-30 07:16:47 1 xtwarmswap remove commands NO ["c0-0c1s8"]
865976 acg 2015-04-30 07:16:55 2015-04-30 07:17:25 0 xtwarmswap remove commands NO ["unknown"]
766569 acg 2015-04-30 07:16:56 2015-04-30 07:16:56 Handling Warm swap for partition. nlrd NO ["unknown"] 455
866491 acg 2015-04-30 07:16:56 2015-04-30 07:16:56 0 xtcli set_alert commands NE ["c0-0c1s8a0"]
752251 acg 2015-04-30 07:17:03 2015-04-30 07:17:03 Setting alerts due to failures. A network reroute is required nlrd NE ["unknown"] 498
756229 acg 2015-04-30 07:17:10 2015-04-30 07:17:10 Quiescing the network. This should result in decreased network nlrd NE ["unknown"] 509
756239 acg 2015-04-30 07:17:10 2015-04-30 07:17:10 Finished quiescing the network. nlrd NE ["unknown"] 512
865961 acg 2015-04-30 07:17:16 2015-04-30 07:17:23 0 xtcli set_alert commands NO ["unknown"]
756132 acg 2015-04-30 07:17:25 2015-04-30 07:17:25 Telling all blades to unthrottle network bandwidth. This should enable .. nlrd NE ["unknown"] 423
756249 acg 2015-04-30 07:17:25 2015-04-30 07:17:25 Unquiescing the network. This will allow normal traffic injection ... nlrd NE ["unknown"] 554
756259 acg 2015-04-30 07:17:25 2015-04-30 07:17:25 Finished unquiescing the network. This will allow normal traffic injection to resume. nlrd NE ["unknown"]

557
766581 acg 2015-04-30 07:17:25 2015-04-30 07:17:25 Warm swap was successful. This is in response to a operation intended to reset/reinit/replace a component (including

network components). nlrd NO ["unknown"] 566
766593 acg 2015-04-30 07:17:25 2015-04-30 07:17:25 The recovery operation for a failed link(s) was successful nlrd NE ["unknown"] 563
766603 acg 2015-04-30 07:17:25 2015-04-30 07:17:25 Done handling warm swap. This may not necessarily indicate success (?). This is in response to a operation

intended to reset/reinit/replace a component (including network components). nlrd NO ["unknown"] 561
757133 acg 2015-04-30 07:17:42 2015-04-30 07:17:42 Starting to quiesce the node (node id might be in nodemask). controllermessages NE ["

c0-0c1s8"] 2661
758693 acg 2015-04-30 07:17:42 2015-04-30 07:17:42 Finished quiescing the node. controllermessages NE ["c0-0c1s8"] 2666
763170 acg 2015-04-30 07:17:42 2015-04-30 07:17:42 Starting ORB scrub -- removing items in the Outstanding Request Buffer since its been too long for those messages

controllermessages NE ["c0-0c1s8"] 2660
764343 acg 2015-04-30 07:17:52 2015-04-30 07:17:52 Finishing ORB scrub -- done removing items in the Outstanding Request Buffer since its been too long for

those messages controllermessages NE ["c0-0c1s8"] 2669
760262 acg 2015-04-30 07:17:53 2015-04-30 07:17:53 Starting to unquiesce the node. controllermessages NE ["c0-0c1s8"] 2670
761831 acg 2015-04-30 07:17:53 2015-04-30 07:17:53 Finished unquiescing the node. controllermessages NE ["c0-0c1s8"] 2676
764926 acg 2015-04-30 07:17:53 2015-04-30 07:17:53 ORB timeout on node (nodes are in the message) nlrd NE ["unknown"] 435
757134 acg 2015-04-30 07:17:54 2015-04-30 07:17:54 Starting to quiesce the node (node id might be in nodemask). controllermessages NE ["c0-0c1s8"] 2661
758694 acg 2015-04-30 07:17:54 2015-04-30 07:17:54 Finished quiescing the node. controllermessages NE ["c0-0c1s8"] 2666
763171 acg 2015-04-30 07:17:54 2015-04-30 07:17:54 Starting ORB scrub -- removing items in the Outstanding Request Buffer since its been too long for those messages

controllermessages NE ["c0-0c1s8"] 2660
764344 acg 2015-04-30 07:18:04 2015-04-30 07:18:04 Finishing ORB scrub -- done removing items in the Outstanding Request Buffer since its been too long for

those messages controllermessages NE ["c0-0c1s8"] 2669
760263 acg 2015-04-30 07:18:05 2015-04-30 07:18:05 Starting to unquiesce the node. controllermessages NE ["c0-0c1s8"] 2670
761832 acg 2015-04-30 07:18:05 2015-04-30 07:18:05 Finished unquiescing the node. controllermessages NE ["c0-0c1s8"] 2676
764927 acg 2015-04-30 07:18:05 2015-04-30 07:18:05 ORB timeout on node (nodes are in the message) nlrd NE ["unknown"] 435
.....
866031 acg 2015-04-30 07:56:36 2015-04-30 08:03:27 0 xtwarmswap add 1 commands NO ["c0-0c1s8"]
766571 acg 2015-04-30 07:56:39 2015-04-30 07:56:39 Handling Warm swap for partition. nlrd NO ["unknown"] 455
865720 acg 2015-04-30 07:56:39 2015-04-30 07:56:40 0 xtcli clr_alert 1 commands NO ["c0-0c1s8"]
865819 acg 2015-04-30 07:56:39 2015-04-30 07:56:39 0 xtcli clr_alert 1 commands NE ["c0-0c1s8a0"]
866784 acg 2015-04-30 07:56:40 2015-04-30 07:56:40 0 xtcli clr_warn 1 commands NO ["c0-0c1s8"]
865012 acg 2015-04-30 07:56:46 2015-04-30 08:02:21 0 xtcli clr_warn 1 commands NO ["c0-0c1s8"]
752253 acg 2015-04-30 08:02:22 2015-04-30 08:02:22 Setting alerts due to failures. A network reroute is required nlrd NE ["unknown"] 498
756231 acg 2015-04-30 08:03:08 2015-04-30 08:03:08 Quiescing the network. This should result in decreased network injection. nlrd NE ["unknown"]

509
756241 acg 2015-04-30 08:03:08 2015-04-30 08:03:08 Finished quiescing the network. nlrd NE ["unknown"] 512
756251 acg 2015-04-30 08:03:23 2015-04-30 08:03:23 Unquiescing the network. This will allow normal traffic injection to resume. nlrd NE ["unknown"] 554
756261 acg 2015-04-30 08:03:23 2015-04-30 08:03:23 Finished unquiescing the network. This will allow normal traffic injection to resume. nlrd NE ["unknown"]

557
756134 acg 2015-04-30 08:03:24 2015-04-30 08:03:24 Telling all blades to unthrottle network bandwidth. This should enable increased network injection. nlrd

NE ["unknown"] 423
766583 acg 2015-04-30 08:03:24 2015-04-30 08:03:24 Warm swap was successful. This is in response to a operation intended to reset/reinit/replace a component (including

network components). nlrd NO ["unknown"] 566
766595 acg 2015-04-30 08:03:24 2015-04-30 08:03:24 The recovery operation for a failed link(s) was successful nlrd NE ["unknown"] 563
766605 acg 2015-04-30 08:03:24 2015-04-30 08:03:24 Done handling warm swap. This may not necessarily indicate success (?). This is in response to a operation

intended to reset/reinit/replace a component (including network components). nlrd NO ["unknown"] 561
865000 acg 2015-04-30 08:08:34 2015-04-30 08:08:39 0 xtcli boot 1 commands NO ["c0-0c1s8"]

Fig. 15. A blade reseating was performed to resolve blade problems which led to the congestion event. Multiple iterations of scrubbing the Outstanding
Request Buffer (ORB) were needed which delayed resolution. The annotation of the system administrator (identified by ’abc’) action supports the diagnosis.

query for annotations where any text field contains the word 'route'
python get.py -t route -f table annotations

id authorid starttime endtime state description manual logfiles LDcategory components balerpatternid
752245 acg 2015-02-27 11:53:08 2015-02-27 11:53:08 Setting alerts due to failures. A network reroute is required nlrd NE ["unknown"] 498
...
752255 acg 2015-05-08 07:54:15 2015-05-08 07:54:15 Setting alerts due to failures. A network reroute is required nlrd NE ["unknown"] 498
752256 acg 2015-05-08 08:11:47 2015-05-08 08:11:47 Setting alerts due to failures. A network reroute is required nlrd NE ["unknown"] 498
756223 acg 2015-05-08 08:17:46 2015-05-08 08:17:46 Error during computation of network route nlrd NE ["unknown"] 749
756224 acg 2015-05-08 08:31:24 2015-05-08 08:31:24 Error during computation of network route nlrd NE ["unknown"] 749

Fig. 16. Output of query for route annotations. Complete output = 15 annotations. Occurrences of network reroutes and failures in the rerouting process are
of interest.

query for any annotations within the time range where the LDcategory is 'NE' (network)
python get.py -s ''2015-05-08 08:00:00'' -e ''2015-05-08 08:35:00'' -t LDcat=NE -f table annotations

id authorid starttime endtime description manual logfiles LDcategory components balerpatternid
866450 acg 2015-05-08 08:11:42 2015-05-08 08:11:42 xtcli set_alert 1 commands NE ["c0-0c0s9a0"]
752256 acg 2015-05-08 08:11:47 2015-05-08 08:11:47 Setting alerts due to failures. A network reroute is required nlrd NE ["unknown"] 498
756234 acg 2015-05-08 08:11:49 2015-05-08 08:11:49 Quiescing the network. This should result in decreased network injection. nlrd NE ["unknown"]

509
756244 acg 2015-05-08 08:11:50 2015-05-08 08:11:50 Finished quiescing the network. nlrd NE ["unknown"] 512
756254 acg 2015-05-08 08:12:04 2015-05-08 08:12:04 Unquiescing the network. This will allow normal traffic injection to resume. nlrd NE ["unknown"]

554
756148 acg 2015-05-08 08:12:05 2015-05-08 08:12:05 Telling all blades to unthrottle network bandwidth. This should enable increased network injection.

nlrd NE ["unknown"] 423
756264 acg 2015-05-08 08:12:05 2015-05-08 08:12:05 Finished unquiescing the network. This will allow normal traffic injection to resume. nlrd NE ["

unknown"] 557
766598 acg 2015-05-08 08:12:05 2015-05-08 08:12:05 The recovery operation for a failed link(s) was successful nlrd NE ["unknown"] 563
864984 acg 2015-05-08 08:16:43 2015-05-08 08:16:43 xtcli clr_alert 1 commands NE ["c0-0c0s9a0"]
752223 acg 2015-05-08 08:17:46 2015-05-08 08:17:46 Marking HSN links down on blades that could not be added nlrd NE ["unknown"] 745
756149 acg 2015-05-08 08:17:46 2015-05-08 08:17:46 Telling all blades to unthrottle network bandwidth. This should enable increased network injection.

nlrd NE ["unknown"] 423
756223 acg 2015-05-08 08:17:46 2015-05-08 08:17:46 Error during computation of network route nlrd NE ["unknown"] 749
866808 acg 2015-05-08 08:17:46 2015-05-08 08:17:46 xtcli set_alert 1 commands NE ["c0-0c0s9a0"]
866328 acg 2015-05-08 08:30:21 2015-05-08 08:30:21 xtcli clr_alert 1 commands NE ["c0-0c0s9a0"]
752224 acg 2015-05-08 08:31:24 2015-05-08 08:31:24 Marking HSN links down on blades that could not be added nlrd NE ["unknown"] 745
756150 acg 2015-05-08 08:31:24 2015-05-08 08:31:24 Telling all blades to unthrottle network bandwidth. This should enable increased network injection.

nlrd NE ["unknown"] 423
756224 acg 2015-05-08 08:31:24 2015-05-08 08:31:24 Error during computation of network route nlrd NE ["unknown"] 749
865971 acg 2015-05-08 08:31:24 2015-05-08 08:31:24 xtcli set_alert 1 commands NE ["c0-0c0s9a0"]

Fig. 17. Output of query for network related annotations to investigate the cause of the failed routes. Complete output = 24 annotations. A search of the raw
log lines would be much more labor intensive – 238,000 raw log lines occurred during this period.

query for annotations within the time range and for the specified component
python get.py -s "2015-05-08 08:00:00" -e "2015-05-08 08:35:00" -c c0-0c0s9 -f table annotations

id authorid starttime endtime description logfiles LDcategory components balerpatternid
864619 acg 2015-05-08 08:06:48 2015-05-08 08:06:48 OOM kill process. controllermessages NO ["c0-0c0s9"] 2971
866418 acg 2015-05-08 08:11:40 2015-05-08 08:12:05 xtwarmswap remove commands NO ["c0-0c0s9"]
865065 acg 2015-05-08 08:13:00 2015-05-08 08:13:16 xtcli power down commands PW ["c0-0c0s9"]
865709 acg 2015-05-08 08:13:50 2015-05-08 08:15:12 xtcli power up commands PW ["c0-0c0s9"]
864620 acg 2015-05-08 08:13:51 2015-05-08 08:13:51 OOM kill process. controllermessages NO ["c0-0c0s9"] 2971
...REPEATS 6 Times
865955 acg 2015-05-08 08:16:41 2015-05-08 08:17:46 xtwarmswap add commands NO ["c0-0c0s9"]
864985 acg 2015-05-08 08:16:43 2015-05-08 08:16:43 xtcli clr_alert commands NO ["c0-0c0s9"]
865485 acg 2015-05-08 08:16:43 2015-05-08 08:16:43 xtcli clr_warn commands NO ["c0-0c0s9"]
865241 acg 2015-05-08 08:19:09 2015-05-08 08:19:09 xtwarmswap remove commands NO ["c0-0c0s9"]
865015 acg 2015-05-08 08:19:58 2015-05-08 08:19:58 xtcli halt commands NO ["c0-0c0s9"]
864624 acg 2015-05-08 08:21:01 2015-05-08 08:21:01 OOM kill process. controllermessages NO ["c0-0c0s9"] 2971
...REPEATS 5 Times
866482 acg 2015-05-08 08:21:21 2015-05-08 08:21:51 xtcli power down commands PW ["c0-0c0s9"]
865041 acg 2015-05-08 08:25:08 2015-05-08 08:26:29 xtcli power up commands PW ["c0-0c0s9"]
866012 acg 2015-05-08 08:30:18 2015-05-08 08:31:24 xtwarmswap add commands NO ["c0-0c0s9"]
865948 acg 2015-05-08 08:30:21 2015-05-08 08:30:21 xtcli clr_alert commands NO ["c0-0c0s9"]
866451 acg 2015-05-08 08:30:21 2015-05-08 08:30:21 xtcli clr_warn commands NO ["c0-0c0s9"]

Fig. 18. Output of query for annotations to investigate the cause of the component failure. Complete output = 90 annotations, about 10 of which are distinct.
For example, the node-related annotations occur for each node on the blade and many repeat in time and are suppressed in the figure. An OOM killer event
occurs which is reported by the blade controller, not a node.

example xtcli power with incorrect argument or target specified
at 11:05:57, result in error. Also illustrated are manual attribution
of any annotations of events from the command file and p0-XXX
directories. The latter are attributed to a generic system adminstrator
authorid, adm, for the annotation, as opposed to the human annotation
of the blade reseating in the previous example.

VII. CONCLUSIONS

The Holistic Measurement Driven Resilience (HMDR) project
seeks to characterize faults in modern large-scale systems in terms of
root and/or most probable cause, likelihood of detection, frequency
of occurence, timescales for resultant system impact, and efficiency
of error recovery. In addition we seek to determine instrumentation

that can be used for fault detection, characterization, and triggering
of response mechanisms.

In this work we developed a basis - in the form of a machine-
readable vocabulary and an annotation schema - for cataloging and
discovering collections of log-like data and for annotating them to
expose a tractable view of significant events, expert commentary and
contextual notes. We also developed tools that use this basis to find
and filter log data in support of bring failure analysis to a tractable
scope.

Our annotations of key events enable more efficient search and
indentification of events, locations, and timescales of interest. Further,
the annotations enable identification of external events, such as
fault injections and component replacements, that will enable more

query for annotations between the time frame of interest for the named component and any components within a depth of 1
python get.py -s "2015-05-08 08:35:00" -e "2015-05-08 23:35:00" -c c0-0c0s9 -d 1 -f table annotations

id authorid starttime endtime endstate description manual logfiles LDcategory components balerpatternid
865860 acg 2015-05-08 08:40:24 2015-05-08 08:40:54 0 xtcli power down 1 commands PW ["c0-0c0s9"]
866403 acg 2015-05-08 08:51:18 2015-05-08 08:52:39 0 xtcli power up 1 commands PW ["c0-0c0s9"]
865969 acg 2015-05-08 09:04:56 2015-05-08 09:05:09 0 xtcli power up 1 commands PW ["c0-0c0s9"]
865426 acg 2015-05-08 10:55:04 2015-05-08 10:55:21 0 xtcli shutdown 1 commands NO ["unknown"]
865427 acg 2015-05-08 10:59:07 2015-05-08 10:59:08 0 xtcli clr_alert 1 commands NO ["c0-0c0s9"]
865429 acg 2015-05-08 10:59:07 2015-05-08 10:59:08 0 xtcli clr_alert 1 commands NE ["c0-0c0s9a0"]
866614 acg 2015-05-08 10:59:08 2015-05-08 11:00:13 0 xtcli halt 1 commands NO ["unknown"]
865078 acg 2015-05-08 11:00:29 2015-05-08 11:00:29 1 xtcli power on 1 commands PW ["c0-0c0s9"]
866365 acg 2015-05-08 11:00:42 2015-05-08 11:00:53 0 xtcli power up 1 commands PW ["c0-0c0s9"]
766617 acg 2015-05-08 11:04:02 2015-05-08 11:04:02 Boot manager - halt request has failed bm NO ["unknown"] 15732
866399 acg 2015-05-08 11:04:02 2015-05-08 11:04:02 0 xtcli halt 1 commands NO ["c0-0c0s9"]
865284 acg 2015-05-08 11:05:57 2015-05-08 11:05:57 1 xtcli power 1 commands PW ["unknown"]
74 adm 2015-05-08 11:15:31 reboot (p0) 1 NO ["unknown"]
866035 acg 2015-05-08 11:15:42 2015-05-08 11:22:59 1 xtcli power up 1 commands NO ["unknown"]
866268 acg 2015-05-08 11:26:54 2015-05-08 11:26:54 0 xtcli slot_off 1 commands NO ["c0-0c0s9"]
864961 acg 2015-05-08 11:27:06 2015-05-08 11:27:06 1 xtcli power slot_off 1 commands PW ["c0-0c0s9"]
866436 acg 2015-05-08 11:27:18 2015-05-08 11:27:48 0 xtcli power down_slot 1 commands PW ["c0-0c0s9"]
75 adm 2015-05-08 11:55:20 reboot (p0) 1 NO ["unknown"]
866564 acg 2015-05-08 11:55:35 2015-05-08 11:57:04 1 xtcli power down_slot 1 commands NO ["unknown"]
866547 acg 2015-05-08 12:42:12 2015-05-08 12:42:12 1 xtcli power slot_off 1 commands PW ["c0-0c0s9"]
866460 acg 2015-05-08 12:42:21 2015-05-08 12:42:52 0 xtcli power down_slot 1 commands PW ["c0-0c0s9"]
865783 acg 2015-05-08 12:43:11 2015-05-08 12:43:11 0 xtcli disable 1 commands NO ["c0-0c0s9"]
76 adm 2015-05-08 12:43:43 reboot (p0) 1 NO ["unknown"]
864945 acg 2015-05-08 12:43:54 2015-05-08 12:50:15 0 xtcli disable 1 commands NO ["unknown"]
866412 acg 2015-05-08 12:50:18 2015-05-08 12:50:18 0 xtcli clr_alert 1 commands NE ["c0-0c0s9a0"]

Fig. 19. Output of query for annotations to investigate the resolution of the component failure. Attempts to address the blade itself were unsuccessful, and
several reboots were required before the alert cleared.

accurate characterization of fault occurrences and impact.
In addition, HMDR releases datasets for resilience research. We

will be releasing the annotations in this work to augment the dataset,
which is currently released. In addition, we will be releasing an
annotated dataset from controlled, complex single and multi fault
injection tests [14] on the (now retired) 9000 node Cielo Cray XE
system. The annotations will facilitate understanding of the datasets
for these two different generations of Cray systems.

ACKNOWLEDGMENTS

The authors would like to thank Saurabh Jha (UIUC), Tom Tucker
(Open Grid Computing), Kevin Pedretti (SNL), Jason Repik (SNL),
and the HMDR team for useful conversations.

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research, under Award Number 2015-02674.

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract No. DE-
AC02-05CH11231, and Sandia National Laboratories, a multimis-
sion laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of En-
ergy’s National Nuclear Security Administration under contract DE-
NA0003525. The views expressed in the article do not necessarily
represent the views of the U.S. Department of Energy or the United
States Government.

REFERENCES

[1] “The HMDR Project: Holistic Measurement-Driven Resilience,”
(Accessed 2018). [Online]. Available: http://portal.nersc.gov/project/
m888/resilience/

[2] M. Showerman, A. Gentile, and J. Brandt, “Addressing the Challenges
of Systems Monitoring Data Flows (BoF),” in Proc. Cray Users Group,
2016.

[3] “Logstash,” (Accessed 2018). [Online]. Available: http://www.elastic.
co/logstash

[4] N. Taerat, J. Brandt, A. Gentile, M. Wong, and C. Leangsuksun, “Baler:
deterministic, lossless log message clustering tool,” Computer Science -
Research and Development, vol. 26, no. 3-4, pp. 285–295, 2011.

[5] T. Berners-Lee, “Plenary at www geneva 94,” 1994, (Accessed 2018).
[Online]. Available: https://www.w3.org/Talks/WWW94Tim/

[6] “RDF,” (Accessed 2018). [Online]. Available: https://www.w3.org/
standards/techs/rdf#w3c all

[7] “RDF1.1 Turtle,” (Accessed 2018). [Online]. Available: https://www.
w3.org/TR/turtle/

[8] “W3C,” (Accessed 2018). [Online]. Available: https://www.w3.org/
[9] “Data catalog vocabulary (dcat),” 2014, (Accessed 2018). [Online].

Available: https://www.w3.org/TR/vocab-dcat/
[10] Cray Inc., “SEC man page,” (Accessed 14.May.18).
[11] C. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Logdiver: A

tool for measuring resilience of extreme-scale systems and applications,”
in Proc. of the 5th Workshop on Fault Tolerance for HPC at eXtreme
Scale, 2015.

[12] J. Brandt, A. Gentile, and J. Repik, “Mutrino Dataset 2/15 -
5/15,” 2016. [Online]. Available: http://portal.nersc.gov/project/m888/
resilience/datasets/mutrino/logs.051715.cr.tgz

[13] J. Brandt, A. Gentile, C. Martin, J. Repik, and N. Taerat, “New Sys-
tems, New Behaviors, New Patterns: Monitoring Insights from System
Standup,” in Wrk. on Monitoring and Analysis for High Performance
Computing Systems Plus Applications (HPCMASPA) Proc. IEEE Int’l
Conf. on Cluster Computing (CLUSTER), 2015.

[14] V. Formicola, S. Jha, F. Deng, D. Chen, A. Bonnie, M. Mason, J. Brandt,
A. Gentile, L. Kaplan, J. Repik, J. Enos, M. Showerman, A. Greiner,
Z. Kalbarczyk, R. Iyer, and W. Kramer, “Data-Driven Understanding
of Fault Scenarios and Impacts Through Fault Injection: Experimental
Campaign in Cielo,” in Proc. Cray User’s Group, 2017.

